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Abstract

This paper deals with the numerical approximation of the solution of a weakly singular integral equation of the second
kind which appears in Astrophysics. The reference space is the complex Banach space of Lebesgue integrable functions
on a bounded interval whose amplitude represents the optical thickness of the atmosphere. The kernel of the integral
operator is de"ned through the "rst exponential-integral function and depends on the albedo of the media. The numerical
approximation is based on a sequence of piecewise constant projections along the common annihilator of the corresponding
local means. In order to produce high precision solutions without solving large scale linear systems, we develop an iterative
re"nement technique of a low order approximation. For this scheme, parallelization of matrix computations is suitable.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The system of equations dealing with radiative transfer in stellar atmospheres is strongly coupled
and nonlinear. It can be stated by grouping the equations in three categories: transfer, structural and
energy equations. For more speci"c details on the astrophysical model, see [5].

Here, we will consider the restricted problem which is obtained when the temperature and the
pressure are given (or computed). Then the system of diAerential equations becomes linear and a
linear integral formulation of the transfer problem is derived as follows:
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For each radiation frequency, the diAerential equation satis"ed by the speci"c intensity of the
radiation I = I(�; �) in a plane parallel medium is

�
@I
@�

(�; �) = I(�; �)− ’(�); �∈ [− 1; 1]; �∈ ]0; �0[:

The variable �∈ ]0; �0[ represents the optical depth, �0 ∈ ]0;+∞[ is the optical thickness of the
atmosphere, �∈ [− 1;+1] is the cosine of the inclination angle from the outer normal to the plane
�=0. Depending on the frequency, typical values of �0 may be 0:001; 1; 1000 or 109. The parameter
�0 is adimensional but related to the spatial thickness of the medium.

The source function ’ is given by

’(�) = ’∗(�) + $(�)J (�);

where ’∗ describes the radiation due to internal (isotropic) sources, J is the mean intensity:

J (�) =
1
2

∫ 1

−1
I(�; �) d�

and the albedo $(�)∈ [0; 1] characterizes the scattering properties of the medium at �.
If the boundary conditions are given by

I(0; �) = I−(�) for �∈ [− 1; 0[;

I(�0; �) = I+(�) for �∈ ]0; 1];

then, for �¡ 0,

I(�; �) = I−(�) exp(�=�)− 1
�

∫ �

0
’(�′) exp[(�− �′)=�] d�′

for �¿ 0,

I(�; �) = I+(�) exp[− (�0 − �)=�] +
1
�

∫ �0

�
’(�′) exp[(�− �′)=�] d�′

and

I(�; 0) = ’(�):

Hence,

J (�) = J±(�) +
1
2

∫ �0

0
E1(|�− �′|)’(�′) d�′;

where

J±(�) =
1
2

(∫ 0

−1
I−(�) exp(�=�) d� +

∫ 1

0
I+(�) exp[− (�0 − �)=�] d�

)

describes the radiation due to external sources, and E1 is the "rst exponential-integral function. We
recall that the exponential-integral functions are de"ned by

E�(�) :=
∫ ∞

1

exp(−��)
�� d�; �¿ 1;
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and that, in a neighborhood of 0; E1(�) has a logarithmic behaviour:

lim
�→ 0+

E1(�)
ln �

=−1:

Also,

E′
�+1 =−E� and E�+1(0) =

1
�

for �¿ 1:

More details on these functions can be found in [1], where useful computational relationships are
given.

In this paper we assume that the albedo $ is constant. Then the above transfer problem is described
by the weakly singular integral equation of the second kind

’= f + T’;

where

f(�) :=’∗(�) + $J±(�);

(T’)(�) :=
$
2

∫ �0

0
E1(|�− �′|)’(�′) d�′:

This equation may be solved by iterative re"nement methods together with projection discretization
methods. In several applications f is a Lebesgue integrable function. The space X :=L1([0; �0]) being
invariant under T , we can settle the equation in this Banach space. We consider n linearly independent
functions in X , en; j, spanning a subspace Xn of X where the integral operator will be projected thus
yielding a "nite rank approximation, Tn. The solution of the approximate equation ’n = f + Tn’n,
where 1 is in the resolvent set of Tn, leads to a system of n linear equations whose solution allows us
to recover the approximate solution ’n through a closed formula. The function ’n is an approximation
to ’ that improves when n increases if the sequence of projections is pointwise convergent to the
identity operator. Hence the required precision may lead to linear systems of considerable dimension
whose condition number may increase with n. An iterative re"nement scheme may overcome these
problems by producing the approximate solution corresponding to a "ne discretization Tm, where
m�n, of T as the limit of a sequence of approximate solutions based on the solution of a linear
system of low order n (n small but large enough to ensure convergence). This kind of re"nement
method is specially suited for parallelization, as blocks of the matrix representing Tm can be computed
simultaneously, in diAerent processors. The multiplications involving Tm can be executed in parallel
also thus reducing the computing time.

2. Initial approximation

2.1. Convergence theory

We consider the complex Banach space X :=L1([0; �0]) and the integral operator T :X →X de"ned
by

(Tx)(�) :=
∫ �0

0
g(|�− �′|)x(�′) d�′; x∈X; �∈ [0; �0];
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where the function g is de"ned by

g(�) :=
$
2
E1(�); 0¡�6 �0:

This function is weakly singular in the following sense:

lim
�→ 0+

g(�) = +∞; (1)

g∈C0(]0; �0]) ∩ X; (2)

sup
�∈ [0;�0]

∫ �0

0
g(|�− �′|) d�′ ¡+∞ (3)

and also satis"es

g(�)¿ 0 for all �∈ ]0; �0]; (4)

g is a decreasing function on ]0; �0]: (5)

We have proved in [2] that these conditions imply that such an operator T is compact and that

‖T‖1 = 2
∫ �0=2

0
g(�) d�= $(1− E2(�0=2))¡ 1:

Hence the Fredholm equation of the second kind

’= f + T’ (6)

is uniquely solvable for each f∈X , and the solution ’ depends continuously on f.
A "nite rank approximation Tn of T will be constructed as follows:
Consider a family of grids Gn such that

0= : �n;0 ¡�n;1 ¡ · · ·¡�n;n−1 ¡�n;n:=�0:

We de"ne

dn; i; j := |�n; i − �n; j|;
hn; i :=dn; i; i−1;

hn :=max{hn; i: i∈ <1; n=}:
For x∈X we set

〈x; e∗n; j〉 :=
1

hn;j

∫ �n; j

�n; j−1

x(�′) d�′;

and, for �∈ [0; �0],

en; j(�) :=

{
1 if�∈ ]�n; j−1; �n; j];

0 otherwise:

It is clear that 〈en; j; e∗n; i〉= �i; j for i; j∈ <1; n= and hence

�nx :=
n∑

j=1

〈x; e∗n; j〉en; j; x∈X;



M. Ahues et al. / Journal of Computational and Applied Mathematics 140 (2002) 13–26 17

de"nes a bounded n-rank projection onto the subspace

Xn :=Span{en; j: j∈ <1; n=}
of piecewise constant functions de"ned a.e. in [0; �0]. We de"ne

Tnx :=�nTx =
n∑

j=1

〈Tx; e∗n; j〉en; j:

Hence Tn is a bounded "nite rank operator in X such that

Tn :=
n∑

j=1

〈 · ; ‘n; j〉en; j;

where

‘n;j :=T ∗e∗n; j:

In [2] we proved that,

‖�n‖1 = 1 for all n;

and that

lim
n→∞‖(I − �n)x‖1 = 0 for all x∈X;

if limn→∞ hn = 0.
Hence Tn is a uniform approximation of T if the grid is such that limn→∞ hn = 0 and, in that

case, 1 is not a spectral value of Tn for n large enough.

2.2. Numerics

The resolution for ’n ∈X of the approximate equation

’n = f + Tn’n; (7)

leads to an n-dimensional linear system. In fact, applying ‘n; i to each member we get the system
with unknown xn,

xn = bn + Anxn; (8)

where

An(i; j):=〈en; j; ‘n; i〉; bn(i):=〈f; ‘n; i〉; xn(j):=〈’n; ‘n; j〉:
Once this system is solved, the solution of (7) is recovered as

’n = f +
n∑

j=1

xn(j)en; j:

In our case, the matrix An in (8) has the following entries:
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For i 
= j,

An(i; j) =
$

2hn; i
[E3(dn; i−1; j)− E3(dn; i−1; j−1) + E3(dn; i; j−1)− E3(dn; i; j)];

the diagonal coeIcients of An being

An(j; j) = $
(
1 +

1
hn;j

[
E3(hn;j)− 1

2

])
:

As a free term f we shall consider the function

f(�) :=

{
1 if 06 �6 �0=2;

0 if �0=2¡�6 �0;

which describes a sudden drop of the temperature on the �= �0=2 layer of the atmosphere. Then the
column bn in (8) has entries

bn(i) :=




$
2hn; i

[2hn; i + E3(�0=2− �n; i−1)− E3(�0=2− �n; i)

+E3(�n; i−1)− E3(�n; i)] if �n; i6 �0=2;

$
2hn; i

[E3(�n; i − �0=2)− E3(�n; i−1 − �0=2)

+E3(�n; i)− E3(�n; i−1)] if �n; i ¿ �0=2:

Taking into account the discontinuity of f at �0=2 and the possibility of a boundary layer at 0,
we have built a family of quasi-uniform grids Gn such that n is a multiple of 10 and

hn; i =




�0
2n

if i∈ <1; n=5=;
�0
n

if i∈ <n=5 + 1; n=2=;

�0
2n

if i∈ <n=2 + 1; 9n=10=;

4�0
n

if i∈ <9n=10 + 1; n=:

(9)

All the computations have been done with the physical parameters

$ = 0:75 and �0 = 1000: (10)

The relative error bound proved in [2] gives in the present case

‖’− ’n‖1
‖’‖1 6 c(1− E2(hn)) = O(−hn ln hn): (11)

For n large enough, the constant c in (11) is independent of n and can be estimated as follows:

c6
10
q

(
1 +

1
q

)
‖(T − I)−1‖1; (12)
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Fig. 1. ’200 corresponding to G200 as in (9).

where

q := inf
Gn

min{hn; i: i∈ <1; n=}
hn

= 0:125

and hence

c6
720

1− $(1− E2(�0=2))
¡ 2880:

The solution of (7) shown in Fig. 1 has been computed with the grid G200.

3. Iterative re�nement scheme

The bound (11) shows that ’n is an approximation to ’ that improves when n grows, and so the
required precision may lead to linear systems of considerable dimension whose condition number
may increase badly with n. The case illustrated in Fig. 1 is such that hn=20 and hence the estimate
(11) indicates that

‖’− ’200‖1
‖’‖1 ¡ 172 800;

which is either a pessimistic bound or a useless one.
The pro"le of the matrix A200 is shown in Fig. 2 and the one of A1000 is quite similar: a non-

symmetric band matrix of semi-bandwidth of about 20% of its order.
As the size of these matrices is not large we solved the problem by direct methods (LU factor-

ization) and local diAerences between the solutions ’200 and ’1000 are shown in Figs. 3 and 4.



20 M. Ahues et al. / Journal of Computational and Applied Mathematics 140 (2002) 13–26

Fig. 2. Pro"le of matrix A200.

Fig. 3. Zoom of ’200 with crosses and ’1000 with a line.

Problems of this size can easily be solved by direct methods, nowadays, but for a growing size
of the interval [0; �0], and consequently of the dimension of the matrix it will no longer be possible,
either because it takes too long and/or because the matrix will not "t in the memory.

The iterative re"nement methods may overcome these problems by getting the exact solution as the
limit of a sequence of approximate solutions based on the solution of a linear system of dimension
n (n small but large enough to ensure convergence). A simple iterative re"nement formula can
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Fig. 4. Zoom of ’200 with circles and ’1000 with a dotted line.

be derived from the "rst iterative variant of NystrNom method suggested by Atkinson [3, p. 139],
properly adapted to the projection discretization we are dealing with:

’(0) :=’n;

"(k) :=f + T’(k) − ’(k);

’(k+1) :=’(k) − Rn"(k):

This corresponds to a Newton-type method where the problem is stated in the form f+T’−’=0 and
the inverse of the FrOechet derivative of the left-hand side, which is nothing but the resolvent operator
R := (T− I)−1, is approximated by the approximate resolvent Rn := (Tn− I)−1. This iteration formula
converges linearly since the approximation Tn of a compact operator T obtained by a projection
method yields the uniform norm convergence of Rn to R. Since the resolvent Rn satis"es

I + Rn = RnTn;

the Atkinson’s iteration can be rewritten as

’(k+1) :=’(0) + Rn(Tn’(k) − T’(k)): (13)

This formulation has the advantage of avoiding the computation of the residual "(k) which tends to
zero as k tends to in"nity in case of convergence. In practice the operator T is not used in this
formula: a "ner discretization of T , Tm :=�mT�m, m�n is used instead and its restriction to the
subspace Xm is represented by an m× m matrix Am, the coordinates of the projection of ’m on Xm

are denoted by xm.
When the coarse grid is included in the "ner one, n divides m and if we de"ne r :=m=n we have

en; i =
r×i∑

k=r×(i−1)+1

em;k :
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Prolongation and restriction procedures are done through matrices C and D de"ned as follows:

D(i; j) = 〈en; j; ‘m; i〉=
r×i∑

k=r×(i−1)+1

Am(i; k) =
m∑

k=1

Am(i; k)P(k; j)

for i∈ <1; m=, j∈ <1; n=, where

P(k; j) :=

{
1 if r × (j − 1) + 16 k6 r × j;

0 otherwise:

and so D = AmP. Similarly,

C(i; j) := 〈em;j; ‘n; i〉= 1
hn; i

r×i∑
k=r×(i−1)+1

∫ �m; k

�m; k−1

(Tem;j)(�) d�

=
m∑

k=1

R(i; k)Am(k; j)

for i∈ <1; n=, j∈ <1; m=, where

R(i; k) :=

{
hm;k=hn; i if r × (i − 1) + 16 k6 r × i;

0 otherwise

and so C = RAm. The numerical results obtained with this re"nement formula are described in
Section 5.

4. Parallel implementations

As the dimensions of the discretization matrices available until now are small and the LU fac-
torization of the "ne grid matrix is possible the "rst parallelizing option taken was the use of the
ScaLAPACK library to parallelize that factorization. ScaLAPACK [4] is a library for parallel dense
linear algebra computations over distributed memory MIMD machines. It is based on basic linear
algebra subroutines (BLAS) and the LAPACK library for local computations, on PBLAS for the
global addressing through call to BLAS and on basic linear algebra communication subroutines
(BLACS) for the communications. Its implementation is adapted to the computation platform to be
used, in our case, a cluster of 4 DEC ALPHA workstations connected by a Gigaswitch, and with
parallel virtual machine (PVM) a software for communications in a distributed memory machine.
ScaLAPACK has both general dense and band matrix storage structures. For dense matrices it uses
a 2D block cyclic data distribution to guarantee a good load balance of the calculations. For narrow
band matrices one-dimensional block column distribution is enough to achieve a good load balance
and that is the distribution strategy that was used to parallelize Atkinson’s algorithm (see Fig. 5).
For this we assign to each of the P processors a block of NB contiguous columns of matrices Am

and C, and a block of NB contiguous rows of matrix D and vector xm. For simplicity, in Fig. 5,
NB = n and matrix An and vector xn can either be assigned to another processor or distributed in
the same manner as Am. Processors are supposed to be in a 1× P grid.
In Fig. 6 we describe the parallel algorithm in a Master/Slave paradigm for simplicity of the

description but it can easily be programmed in a single program multiple data (SPMD) fashion too.
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Fig. 5. One-dimensional block column distribution for band matrices.

Fig. 6. Parallel algorithm for the Atkinson’s method.
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Fig. 7. Graph of k �→ log10

(
‖x(k)m − bm − Amx(k)m ‖1

‖x(k)m ‖1

)
.

5. Numerical results and conclusions

The application of the Atkinson’s re"nement formula to the equation (6) with a coarse grid of
n=200 subintervals and a "ne grid of m=1000 subintervals, in the four discretization zones described
in (9) leads to a solution that coincides, within the machine precision, with the solution given by
the projection method when m= 1000, as expected.
Fig. 7 shows the evolution of the 1-norm of the relative residual of the iterative solution vector

obtained by the Atkinson’s formula when T is replaced by Tm. The iteration stopped when this
relative residual is less than or equal to 10−13. This last residual, obtained in iteration number 39 is
shown in Fig. 8.

The elapsed and CPU times for the sequential computation of the solution of the problem of
dimension m=1000, by LU factorization plus solutions of the triangular systems (LU+Triang:solve)
and Atkinson’s method up to a 1-norm residual less than or equal to 10−7 are given in Table 1.
This table also includes the time for these computations with the preconditioned GMRES method
(see [6]) with sparse structures. GMRES is an iterative method based on Krylov subspaces. The
preconditioners used were the incomplete LU factorization of level 0 (ILU0) and the incomplete LU
factorization with threshold criteria for dropping "ll-ins in the factorization (ILUT).

As we can see, apart from the PGMRES+ILUT, the three options take similar times, and these
are small enough to make parallelization avoidable.

PGMRES + ILU0 bene"ts from the fact that the band matrix is not very sparse and so the
preconditioner is actually almost the solution of the linear system. ILUT gives an approximation to
LU factors by dropping "ll-in’s smaller than 10−4 and so the factors are much more sparse than the
matrices involved in the other iterative methods. The matrix multiplications are then faster than in
the others.



M. Ahues et al. / Journal of Computational and Applied Mathematics 140 (2002) 13–26 25

Fig. 8. Last iteration relative residual.

Table 1
Sequential results in seconds for m= 1000

Elapsed time CPU time

LU + Triang:solve 4.39 3.41
PGMRES + ILU0 3.10 2.92
PGMRES + ILUT 0.95 0.70
Atkinson’s method 4.75 3.16

Table 2
Times in seconds for m= 1000

Elapsed time CPU time

LU sequential 4.39 3.41
LU parallel 12.87 1.60

The computing times are so small that the parallelization only augments the computation time since
it reduces the CPU time but adds communication and synchronization time. If the ratio arithmetic
computation to communication time is not large enough it is preferable not to parallelize. Table 2
shows this with the results of the parallelization of the LU factorization plus the solution of triangular
systems in seconds on a cluster of four workstations DEC ALPHA when m= 1000.
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